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Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces {Et}t≥0 evolve following the volume
preserving equation

ρV = D∆∂Etµ on ∂Et ,
where

I V is the normal velocity of the evolving surface ∂Et,
I µ is the chemical potential - gradient of the energy,
I 4∂Et is the Laplace-Beltrami operator on ∂Et,
I ρ is the volumetric density,
I D is the diffusion coefficient.
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Advances in applied mechanics, 40 (2004), pp. 1-177
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I study the energy F

I consider an approximation of F via a diffuse interface energy Fε

I study the two systems of evolution equations

I ’diffuse’ evolution equations approximate the ’sharp’ evolution equations
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The energy

Definition

Let ψ : R+ → (0,+∞) such that

I convex and C1

I for every s > 0 it holds
0 < ψ(0) < ψ(s) .

We define the energy functional

F(E, u) :=

ˆ
∂∗E

ψ(u) dHN−1 ,

where E ⊂ RN is a set of finite perimeter and u ∈ L1(∂∗E;R+).

I E is the solid
I u is the adatom density on ∂∗E
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The minimum problem

Definition

Given E ⊂ RN is a set of finite perimeter and u ∈ L1(∂∗E;R+), we define the
total mass

M(E, u) := ρ|E|+
ˆ
∂∗E

u dHN−1 .

Definition

For m > 0, we define the admissible class of competitors

Cl(m) :=
{

(E, u) : E is a set of finite perimeter, u ∈ L1(∂∗E;R+) , M(E, u) = m
}
.

We are interested in the following constrained minimization problem

γm := inf

{
F(E, u) =

ˆ
∂∗E

ψ(u) dHN−1 : (E, u) ∈ Cl(m)

}
,
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A simple observation

F(E, u) =

ˆ
∂∗E

ψ(u) dHN−1

≥ HN−1(∂∗E)ψ

(
1

HN−1(∂∗E)

ˆ
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u dHN−1
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F(E, u) ≥ F(E, u) = ψ(u)HN−1(∂∗E)

⇓

standard isoperimetric problem⇒ E is a ball

Achtung! Volume constraint

M(E, u) = ρ|E|+ uHN−1(∂∗E) = m.
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Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).

Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then

I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,

I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Equilibria configurations

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R ∈ (0, Rm) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then
I E is a ball,
I if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).



Is the energy l.s.c.?

The pacman example



Is the energy l.s.c.?

The pacman example
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The wriggling example



The extended energy

(E, u)

→ (E,µ)

E set of finite perimeter

→ E set of finite perimeter

u ∈ L1(∂∗E;R+)

→ µ = uHN−1 ¬ ∂∗E = u|D1E |

F(E,µ) :=


ˆ
∂∗E

ψ(u) dHN−1 if µ = u|D1E | with u ∈ L1(∂∗E;R+) ,

+∞ otherwise ,

where E is a set with finite perimeter
µ is a non-negative finite Radon measure on RN
in brief (E,µ) ∈ S.
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The topology

Definition

We say that ((Ek, µk))k∈N ⊂ S convergence to (E,µ) ∈ S if

I 1Ek → 1E in L1,

I µk
∗
⇀ µ locally weakly*, i.e., for every ϕ ∈ Cc(RN ) we have that

ˆ
RN

ϕdµk →
ˆ
RN

ϕ dµ,

as k →∞.

Lemma

The above topology is metrizable.
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oscillating phenomena

⇒ recession function
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Convex subadditive envelope

Definition

Let ψ : R→ R. We say that ψ is subadditive if for every r, s ∈ R,

ψ(r + s) ≤ ψ(r) + ψ(s) .

Definition

Let ψ : [0,∞)→ R be a function. We define its convex subadditive envelope
ψ : [0,∞)→ R as

ψ(s) := sup{ f(s) : f : [0,∞)→ R is convex, subadditive and f ≤ ψ } .
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The relaxed energy

Definition

Let ψ : R+ → (0,+∞) be a C1 convex non-decreasing function, and set

Θ := lim
s→+∞

ψ(s)

s
.

We define the functional F := S→ [0,∞) as

F(E,µ) :=

ˆ
∂∗E

ψ (u) dHN−1 + Θµs(RN ) ,

where we write µ = uHN−1 ¬ ∂∗E + µs using the Radon-Nikodym decomposition.

Theorem

F is the relaxed functional of F w.r.t. the topology in S.
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Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional F is lower semi-continuous w.r.t. the topology in S.

Let (Ek, uk)→ (E,µ). Then

F(Ek, uk) =

ˆ
∂∗Ek

ψ(uk) dHN−1

≥
ˆ
∂∗Ek

ψ(uk) dHN−1 = F(Ek, µk) ,

where µk := ukHN−1 ¬ ∂∗E.

By the l.s.c. of F̄ we obtain that

lim inf
k→∞

F(Ek, µk) ≥ F(E,µ) .
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Relaxation - idea for the recovery sequence

Recovery sequence: let (E,µ) ∈ S. Write

µ = uHN−1 ¬ ∂∗E + µs = u|D1E |+ µs ,

using the Radon-Nikodym decomposition. Then

F(E,µ) =

ˆ
∂∗E

ψ (u) dHN−1 + Θµs(RN ) .

We will construct:

(i) (Fk, vk) with (Fk, vk)→ (E, u|D1E |) such that

F(Fk, vk)→
ˆ
∂∗E

ψ (u) dHN−1 ,

(ii) (Gk, wk) with (Gk, wk)→ (∅, µs) such that

F(Gk, wk)→ Θµs(RN ) .
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We now want (Gk, wk) with (Gk, wk)→ (∅, µs) such that

F(Gk, wk)→ Θµs(RN ) .

Let (ρε)ε>0 be a sequence of convolution kernels and consider

fε := µs ∗ ρε .

Then
F(∅, fεLN )→ F(∅, µs)
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Relaxation - idea for the recovery sequence

Consider a 1/k-diadic division (Qk)j∈N of RN .

On each little cube Qkj :

fεLN  ckj dHN−1 ¬ ∂Bkj , with cj →∞

Consider Hk := ∪j∈NBkj . We apply the wriggling process to Hk –> done!
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Minimization of the relaxed functional

Definition

Give (E,µ) ∈ S, we define the total mass

M(E,µ) := ρ|E|+ µ(Rn) .

Definition

For m > 0, we define the admissible class of competitors

Cl(m) :=
{

(E,µ) ∈ S : M(E,µ) = m
}
,

We are interested in the following constrained minimization problem

γm := inf{F(E,µ) : (E,µ) ∈ Cl(m) } .
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Minimization of the relaxed functional

Theorem

Fix m > 0. Assume ψ behaves nicely at s = 0 and at infinity (technical conditions).

Then, there exist R > 0 and 0 < c < s0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm = γm .

Moreover, every minimizing couple (E,µ) ∈ Cl(m) is such that

either E is a ball or E = ∅.

Remark

Due to the presence of the singular part of the measure, minimizers of F have less
structure than minimizers of F .
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A diffuse phase approximation of the energy

For ε > 0 define the diffuse energy Fε : W 1,2(RN )× C(RN )→ [0,+∞] as

Fε(φ, u) :=

ˆ
RN

(
1

ε
W (φ) + ε|∇φ|2

)
ψ(u)dx .

where W : R→ R is a double well potential.

Theorem

Fε
Γ−→ cWF .

Idea of the proof By the Modica-Mortola result, for any set E ⊂ RN with finite perimeter
there exists {φε}ε>0 with φε → 1E , such that(

1

ε
W (φε) + ε|∇φε|2

)
LN ∗

⇀ P(E, ·).

So that Fε(φ, u) ∼ F(E, u). Use the idea for the recovery sequence for F .
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A discrete non-local approximation of the energy

Fix R > 0. For n ∈ N let Xn := {x1, . . . , xn} ⊂ RN be such that xi are chosen
randomly in BR(0) uniformly.

For p ≥ 1 and n ∈ N define the functional
G(p)
n : L1(Xn)→ [0,∞) by

F (p)
n (v, u) :=

1

n

n∑
i=1

[
1

n

n∑
j=1

εp−1
n M εn

ij

∣∣∣∣v(xi)− v(xj)

εn

∣∣∣∣p +
1

εn
W (v(xi))

]
ψ(u(xi)) ,

where

M εn
ij :=

1

εdn
η

(
|xi − xj |

εn

)
,

where η ∈ C∞c (R) is such that
´
R η(x)dx = 1.

Theorem (True at 93% (2% more w.r.t. last week!))

If εn → 0 with a certain rate, then F (p)
n

Γ−→ cη,p,WF .
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Ongoing project/Future plans

I finish the above Γ-convergence theorem
I study the gradient flows of the ’sharp’ energy and the approximate ones
I study the convergence of the solutions of the gradient flows (approximate -> sharp)
I include more effects in the energy (more general materials)
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That’s all folks!

Thank you for your attention!


