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Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces { E; },> evolve following the volume
preserving equation
pV = DAaE“U, on aEt y

where

» V is the normal velocity of the evolving surface 0 F:,
1 is the chemical potential - gradient of the energy,
Aop, is the Laplace-Beltrami operator on O F,
p is the volumetric density,
D is the diffusion coefficient.
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On the surface: Atoms and Adatoms = Adsorbed atoms

Why consider adatoms?
» important in models for solid-vapor interfaces
» effect of regularizing the unstable parabolic equations for surface evolution
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Starting from the standard evolutions equations pV' = DAyg, ;n on OE;, Fried and
Gurtin proposed a model for surface diffusion including adatoms:

Ou + (/) + 7LH@Et)V = DA@Et/L on OFy,
bV +YHsg, — (p+uHsg,)u=0 ondFE,

Eliot Fried and Morton E. Gurtin,

A unified treatment of evolving interfaces accounting for small deformations and atomic transport
with emphasis on grain-boundaries and epitaxy,

Advances in applied mechanics, 40 (2004), pp. 1-177
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p > 0 is the constant volumetric mass density of the crystal,
b > 0 is a constant called kinetic coefficient,
D > 0 is the diffusion coefficient of the adatoms.
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A model with adatoms

Starting from the standard evolutions equations pV = DAgyg, ;n on OE:, Fried and
Gurtin proposed a model for surface diffusion including adatoms:

owu+ (p+uHog,)V = DApg, . on OF,
bV +YHsg, — (p+uHsg, )i =0 ondF,

where
adatoms diffusion via interfacial atomic balances,
neglect bulk diffusion,
unconstrained material: no elastic energy,
neglecting the standard surface stress: the solid-vapor interface is traction-free,
simple materials: mobility coefficient D is constant,
the term p + uH s, is the variation of the total mass p| | + [, u dHN 1 with
respect to shape deformations,

the kinetic term bV: originates from the constitutive equation /' = bV, where F'is a
dissipative force associated with the attachment of vapor atoms on the solid surface.
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The plan

Starting from the standard evolutions equations pV' = DAgyg, ;n on OE,, Fried and
Gurtin model for surface diffusion including adatoms

Ou+ (p+uHop,)V = DAgg,[¢' (u)] on OE,

bV +v¢YHsg, — (p+uHsp, )Y (u) =0 ondE,
To do:

obtain the above system of equations as a gradient flow of some energy 7 C’/)
study the energy 7 C’/)

LOADING, PLEASE WAIT

consider an approximation of F via a diffuse interface energy . ——

study the two systems of evolution equations ™"

SOON|

‘diffuse’ evolution equations approximate the ’sharp’ evolution equations
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The energy

Definition
Let ¢ : R: — (0,+00) such that
convex and C*

for every s > 0 it holds
0 <(0) <9(s).

We define the energy functional

F(E,u) = (u) dHN T,
O*E

where £ C R" is a set of finite perimeter and u € L' (0" F; R.).

E'is the solid
u is the adatom density on 0 FE
prototype of 1 is () := 1 + s% /2 (suggested by Fried and Gurtin)
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The minimum problem

Definition
Given &£ ¢ R is a set of finite perimeter and v € L'(9" E; R ), we define the
total mass

M(E,u) = p|E|—|—/ wdHV L.

O*E

Definition
For m > 0, we define the admissible class of competitors

Cl(m) := { (E,u) : Eis aset of finite perimeter, u € L' (0" E;R;), M(E,u)=m} .

We are interested in the following constrained minimization problem

Ym = inf { F(E,u) = (w) AN 2 (B, u) € Cl(m) } ,

O*E
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A simple observation

F(E,u) = (u) dHN 1
O*FE

1w 1 _
2100 (g )
= F(E,u),

where 1
T=— ANt
e o) /B*E“
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F(E,u) > F(E,u) = p@H " (0"E)
I
standard isoperimetric problem = F is a ball

Achtung! Volume constraint

M(E,u) = p|E| +aH" " (0"E) =m.
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Equilibria configurations

Theorem
Fixm > 0. Assume 1) behaves nicely at s = 0 and at infinity (technical conditions).
Then there exist R € (0, R,,) and a constant ¢ > 0 such that (Br,c) € Cl(m) and
F(Br,¢) = Ym -
Moreover, if (E,w) € Cl(m) is a minimizing couple, then
FE is a ball,
if1) is strictly convex, then u is constant on OF.

Remark

1) behaves nicely at s = 0 and at infinity is in order to avoid as minimizers balls with zero
radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).

v
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The wriggling example
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The extended energy

(B, u) — (E, n)

L' set of finite perimeter  — L' set of finite perimeter

u € LY E;Ry) -  pu=uHN"'LO"E = u|D1g|

(w) dHN ™' if p = u|D1g| withu € LY(0*E;R,),

F(B,p) =4 "0F

+o00 otherwise ,

where [ is a set with finite perimeter
1 is a non-negative finite Radon measure on R

in brief (£, 1) € &.
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The topology

Definition
We say that ((Ex, 11x)) oy C & convergenceto (E, i) € & if
» 1g, — lgin L',

>y — yulocally weakly*, i.e., for every ¢ € C.(R") we have that

/«pduk%/ pdpy,
RN RN

as k — oo.

Lemma
The above topology is metrizable.
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oscillating phenomena

= recession function

concentration phenomena
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Convex subadditive envelope

Definition
Lety : R — R. We say that v is subadditive if for every r, s € R,

P(r+s) <P(r) +9(s).

Definition
Let ) : [0, 00) — R be a function. We define its convex subadditive envelope
1 :[0,00) = R as

h(s) :=sup{ f(s) : f:[0,00) — Ris convex, subadditive and f < ¢ }.




Convex subadditive envelope

Lemma

P(s) =sup{ajs+b; : jEN,b; >0}.




Convex subadditive envelope

Lemma

P(s) =sup{ajs+b; : jEN,b; >0}.




Convex subadditive envelope

Lemma

P(s) =sup{ajs+b; : jEN,b; >0}.




Convex subadditive envelope

Lemma

P(s) =sup{ajs+b; : jEN,b; >0}.




The relaxed energy

Definition

Letv : Ry — (0, +00) be a O convex non-decreasing function, and set

© = liimm E(s)

s—>+00 S




The relaxed energy

Definition

Letv : Ry — (0, +00) be a O convex non-decreasing function, and set

© = liimm E(S)

s—>+00 S

We define the functional 7 := & — [0, 00) as

F(E, p) = O (u) dHY T+ Opt(RY),

O*E

where we write ;1 = wH™ ~' L 9* F + 1 using the Radon-Nikodym decomposition.
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The relaxed energy

Definition

Letv : Ry — (0, +00) be a O convex non-decreasing function, and set

© = liimm E(S)

s—>+00 S

We define the functional 7 := & — [0, 00) as

FEw= [ B an' rou'®Y),

where we write ;1 = wH™ ~' L 9* F + 1 using the Radon-Nikodym decomposition.
7

Theorem

F s the relaxed functional of F w.r.t. the topology in &.
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Relaxation - liminf inequality

Liminf inequality:
Proposition

The functional F is lower semi-continuous w.r.t. the topology in &.

Let (Ex,ur) — (E, ). Then

F (B, ug) :/

Ylup) dHY T > / Plu) dHN Y = F(Bk, i),
O* Ey,

O* E},

where . = w HY L LOYE.

By the I.s.c. of 7 we obtain that

likm inf F(Ey, ui) > F(E, p).
:— 00
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Relaxation - idea for the recovery sequence

Recovery sequence: let (E, 1) € &. Write
p=uH""'LOE+u = u|D1g| + p°,

using the Radon-Nikodym decomposition. Then

F(E,p) = ¥ (u) dHN T+ eut(RY).

JO*E

We will construct:
(F';€7 Uk) with (Fk, vk) — (E, 1L|D1E|) such that

F(Fr,vx) = O (u) dHV T,
O*FE

(Gk,wk) with (Gk, wk) — (@,/J/S) such that

F(Gr,wr) = Op°(RY).



Relaxation - idea

We want (Fk,’l)k) with (Fk,’l)k) — (E,U‘DIED such that

F(Fr,vr) = Y(vg) dHYN T = ¥ (u) dHN L.
O* Fy, JO*E

I
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Let (E,c) € & with E smooth set and a constant adatom density ¢ > so.
Let r > 1 be such that

C =TS0

¥ linearin [so,00) = (c) = ¥(rso) = r(s0) = rip(so)

Let (F)ren be a sequence of smooth sets converging to £ in L' and such that
HY Y OF,) — rHY M (OE).
Then
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Relaxation - idea for the recovery sequence

Let (E,c) € & with E smooth set and a constant adatom density ¢ > so.
Let r > 1 be such that

c=rso

¥ linearin [so,00) = (c) = ¥(rso) = r(s0) = rip(so)

Let (F)ren be a sequence of smooth sets converging to £ in L' and such that
HY Y OF,) — rHY M (OE).
Then
F(Fy, s0) = ¥(so)HN " OFL) — r(so)HY 1 (OF) = ¥(c)H" 1 (OE) = F(E,¢)
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Relaxation - idea for the recovery sequence

We now want (G, wy) with (G, wi) — (0, 1*) such that
F(Gr,wi) — Op° (RY).
Let (p-)->0 be a sequence of convolution kernels and consider
fer=p"*pe.

Then -
F@O, f-LY) = F(0, 1)
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Relaxation - idea for the recovery sequence

Consider a 1/k-diadic division (Q") ;e of RY.
On each little cube Q"

f LN s AN T LaBY, with ¢; — oo

Consider 11" := U;cn B}, We apply the wriggling process to /7" —> done!

Q% B
| ﬂ,( /

HEEEEEE

[T
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Minimization of the relaxed functional

Definition
Give (E, ) € &, we define the total mass

M(E, p) := p|E| + p(R") .

Definition
For m > 0, we define the admissible class of competitors

Cl(m):={(E,p) €6 : M(E,p) =m},

We are interested in the following constrained minimization problem

5. = inf{ F(E,u) : (E,p) € Cl(m)}.
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Minimization of the relaxed functional

Theorem

Fixm > 0. Assume v» behaves nicely at s = 0 and at infinity (technical conditions).
Then, there exist R > 0 and 0 < ¢ < so such that (Br,c) € Cl(m) and

]:(Bva) =Ym = Tm -
Moreover, every minimizing couple (E, 1) € Cl(m) is such that

either E is a ball or E = ().

Remark

Due to the presence of the singular part of the measure, minimizers of 7 have less
structure than minimizers of F.
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1
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A diffuse phase approximation of the energy

For ¢ > 0 define the diffuse energy F. : W"*(R™) x C(RY) — [0, +o0] as

Fuo) = [

1 ,
(1w +elvel* ) vy,
JRN 1)
where W : R — R is a double well potential.
Theorem

.7:5 L) Cwﬁ.

Idea of the proof By the Modica-Mortola result, for any set £ C R” with finite perimeter
there exists {¢- }-~0 with ¢. — 1, such that

(20 +elvol ) ¥ = p(E,).

So that F.(¢,u) ~ F(FE,u). Use the idea for the recovery sequence for F.
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A discrete non-local approximation of the energy

Fix R > 0. Forn € Nlet X,, := {x1,...,2,} C R" be such that 2; are chosen
randomly in Bz (0) uniformly. For p > 1 and n € N define the functional
) LY(X,,) — [0, 00) by

DR I
]:T(Lp)(uu) = Z |:n Zéfb ]]\/f,ij"

i=1

v(@i) — () |”

ren L[|z — ]

where 7 € C2°(R) is such that [, n(z)dz = 1.
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+ 1W(v(m>>} Plu(z))

where



A discrete non-local approximation of the energy

Fix R > 0. Forn € Nlet X,, := {x1,...,2,} C R" be such that 2; are chosen
randomly in Bz (0) uniformly. For p > 1 and n € N define the functional

GP : L'(X,) — [0,00) by

1 n
-1
=S et Mgy
n

j=1

o) —v(zy) |

1 |1}1 — X ‘
[\/16” = — e 29l
iJ Egn ( €n ) )

where 1 € C°(R) is such that [, n(x)dz = 1.

n

FP (v,u) = %Z

1

+ 1W(v(m>>] (),

€n

k3

where

Theorem (True at 93% (2% more w.r.t. last week!))

If e, — 0 with a certain rate, then F\") — ¢, , wF.
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Ongoing project/Future plans

finish the above I'-convergence theorem

study the gradient flows of the 'sharp’ energy and the approximate ones

study the convergence of the solutions of the gradient flows (approximate -> sharp)
include more effects in the energy (more general materials)



That's all folks!

Thank you for your attention!




